已知定义在R上的函数,为常数,且是函数的一个极值点.(Ⅰ)求的值;(Ⅱ)若函数,,求的单调区间;(Ⅲ) 过点可作曲线的三条切线,求的取值范围
已知正方体ABCD-的棱长为1,求直线与AC的距离.
(高考真题)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的余弦值;(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.
在如图所示的几何体中,面为正方形,面为等腰梯形,//,,,.(Ⅰ)求证:平面;(Ⅱ)(能力提升)线段上是否存在点,使平面平面?证明你的结论.
如图所示,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;
(高考真题)如图,在三棱柱中,侧棱垂直于底面,,,BC=1,、分别为、的中点.(1)求证:平面平面;(2)求证:平面;(3)求三棱锥的体积.