如图,在各棱长均为2的三棱柱ABC-ABC中,侧面AACC⊥底面ABC,∠AAC=60°.(Ⅰ)求侧棱AA与平面ABC所成角的正弦值的大小;(Ⅱ)已知点D满足,在直线AA上是否存在点P,使DP∥平面ABC?若存在,请确定点P的位置;若不存在,请说明理由.
a≠0,b≠0,a与b不平行.求证:a+b与a-b不平行.
已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M为圆C上的任意一点,点N在线段MA的延长线上,且=2,求点N的轨迹方程.
如图所示,在▱ABCD中,已知=,=.求证:B、F、E三点共线.
已知△ABC中,A(7,8),B(3,5),C(4,3),M、N是AB、AC的中点,D是BC的中点,MN与AD交于点F,求.
已知正三棱锥S-ABC的底面边长为a,高为h,在正三棱锥内取一点M,试求点M到底面的距离小于的概率.