、如图,四棱锥中,底面ABCD为矩形,底面ABCD,AD=PD=1,AB=(),E,F分别CD,PB的中点。(1)求证:EF平面PAB;,(2)当时,求AC与平面AEF所成角的正弦值。
(本小题满分10分)已知向量:=(cosx,sinx),=(cosx,-sinx),且x∈[,π]。(1)求·,|+|;(2)求f(x)=·+2|+|的最小值。
(本小题满分8分)如图,在中,D、E分别是AB、AC的中点,DM=DE,若,(1)用表示;(2)若N为线段BC上的点,且BN=BC,用向量方法证明:A、M、N三点共线.
(本小题满分10分)已知=(1,2),=(x,1),分别求x的值使:①(2+)⊥(-2) ; ②(2+)∥(-2) ; ③ 与 的夹角是600.
(本小题满分12分)已知函数(1)求f(x)在[0,1]上的极值;(2)若对任意成立,求实数a的取值范围;(3)若关于x的方程在[0,2]上恰有两个不同的实根,求实数b的取值范围.
(本小题满分12分)在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为
(1) 求q的值; (2) 求随机变量的数学期望E;(3) 试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。