、如图,四棱锥中,底面ABCD为矩形,底面ABCD,AD=PD=1,AB=(),E,F分别CD,PB的中点。(1)求证:EF平面PAB;,(2)当时,求AC与平面AEF所成角的正弦值。
已知函数. (1)求函数的定义域,并判断的奇偶性; (2)用定义证明函数在上是增函数; (3)如果当时,函数的值域是,求与的值.
已知过点的直线与抛物线交于两点,为坐标原点. (1)若以为直径的圆经过原点,求直线的方程; (2)若线段的中垂线交轴于点,求面积的取值范围.
已知命题:方程有两个不等的负实根,命题:方程无实根.若为真,为假,求实数的取值范围.
过点作直线与双曲线相交于两点、,且为线段的中点,求这条直线的方程.
已知椭圆的左右焦点坐标分别是,离心率,直线与椭圆交于不同的两点. (1)求椭圆的方程; (2)求弦的长度.