设为抛物线 ()的焦点,为该抛物线上三点,若,且(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,)其中,过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为.若,求的值.
如图,在四棱锥中,平面,底面为直角梯形,∥,, (Ⅰ)求异面直线与所成角的大小; (Ⅱ)求直线与平面所成角的正切值; (Ⅲ)求三棱锥的体积.
求经过直线与圆的交点,且经过点的圆的方程.
如图,在四棱锥中, 平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF//平面PCD; (2)平面BEF⊥平面PAD
已知直线l的倾斜角为135°,且经过点P(1,1). (Ⅰ)求直线l的方程; (Ⅱ)求点A(3,4)关于直线l的对称点A¢的坐标.
设数列的首项, ⑴求的通项公式(已知) ⑵设,证明:。