直线y=-x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点匀速出发,同时到达A点时运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.直接写出A、B两点的坐标;设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;当s= 时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.
已知关于x的一元二次方程,其中a、b、c分别为△ABC三边的长.(1)如果是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
如图,在平面直角坐标系中,矩形OABC的四个顶点坐标分别为O(0,0),A(4,0),B(4,3),C(0,3),G是对角线AC的中点,动直线MN平行于AC且交矩形OABC的一组邻边于E、F,交y轴、x轴于M、N.设点M的坐标为(0,t),△EFG的面积为S.(1)求S与t的函数关系式;(2)当△EFG为直角三角形时,求t的值;(3)当点G关于直线EF的对称点G′ 恰好落在矩形OABC的一条边所在直线上时,直接写出t的值.
如图1,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点D是BC上一定点.动点P从C出发,以2cm/s的速度沿C→A→B方向运动,动点Q从D出发,以1cm/s的速度沿D→B方向运动.点P出发5 s后,点Q才开始出发,且当一个点达到B时,另一个点随之停止.图2是当时△BPQ的面积S( cm2)与点P的运动时间t(s)的函数图象.(1)CD = , ;(2)当点P在边AB上时,t为何值时,使得△BPQ与△ABC为相似?(3)运动过程中,求出当△BPQ是以BP为腰的等腰三角形时t的值.
如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-2,0)、B(4,0)、C(0,2).(1)请用尺规作出△ABC的外接圆⊙P(保留作图痕迹,不写作法);(2)求出(1)中外接圆圆心P的坐标;(3)⊙P上是否存在一点Q,使得△QBC与△AOC相似?如果存在,请求出点Q 坐标;如果不存在,请说明理由.
如图,有一长方形的仓库,一边长为5米.现要将它改建为简易住房,改建后的住房分为客厅、卧室和卫生间三部分,其中客厅和卧室都为正方形,且卧室的面积大于卫生间的面积.若改建后卫生间的面积为6平方米,试求长方形仓库另一边的长.