如图,已知是⊙的直径,⊙过的中点,且⊥,垂足为点.求证:是⊙的切线;若∠=°,=10cm,求⊙的半径.
解关于x的方程:2m-(m-n)x=(m+n)x
若a、b满足,则求代数式3a2b-[2ab2-2(ab-a2b)+ab]+3ab2的值.
(本题12分) 如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求b,c的值.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形,那么是否存在点P,使四边形为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.