在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上。
如图6,在平面直角坐标系中,直线分别交轴、轴于点将绕点顺时针旋转90后得到. (1)求直线的解析式; (2)若直线与直线相交于点,求的面积.
如图5,在平行四边形中,平分交于点,平分交于点. 求证:(1); (2)若,则判断四边形是什么特殊四边形,请证明你的结论.
先化简,再求值:,其中
解不等式组
如图12,把抛物线(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线,抛物线与抛物线关于轴对称.点、、分别是抛物线、与轴的交点,、分别是抛物线、的顶点,线段交轴于点. (1)分别写出抛物线与的解析式; (2)设是抛物线上与、两点不重合的任意一点,点是点关于轴的对称点,试判断以、、、为顶点的四边形是什么特殊的四边形?说明你的理由. (3)在抛物线上是否存在点,使得,如果存在,求出点的坐标,如果不存在,请说明理由.