在一堂数学课中,数学老师给出了如下问题“已知:如图①,在四边形ABCD中,AB=AD,∠B=∠D.求证:CB=CD”.文文和彬彬都想到了利用辅助线把四边形的问题转化为三角形来解决.文文同学证明过程如下:连结AC(如图②)∵∠B=∠D ,AB=AD,AC=AC∴△ABC≌△ADC,∴CB=CD你认为文文的证法是 的.(在横线上填写“正确”或“错误”)彬彬同学的辅助线作法是“连结BD”(如图③),请完成彬彬同学的证明过程.
先化简,再求值:,其中.
一包装礼盒是底面为正方形的无盖立体图形,其展开图如所示:是由一个正方形与四个正六边形组成,已知正六边形的边长为a,甲、乙两人分别用长方形和圆形硬板纸裁剪包装纸盒. (1)问甲、乙两人谁的硬板纸利用率高,请通过计算长方形和圆的面积说明原因。 (2)你能设计出利用率更高的长方形硬板纸吗?请在展开图外围画出长方形硬板纸形状。
定义为函数的 “特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}. (1)将“特征数”是的函数图象向上平移2个单位,得到一个新函数,这个函数的解析式是; (2)在(1)中,平移前后的两个函数分别与y轴交于O、A两点,与直线分别交于C、B两点,判断以A、B、C、O四点为顶点的四边形形状,并说明理由。 (3)若(2)中的四边形(不包括边界)始终覆盖着“特征数”是的函数图象的一部分,求满足条件的实数b的取值范围?
在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t. (1)求tan∠FOB的值; (2)用含t的代数式表示△OAB的面积S;
、两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图. (1)求关于的表达式; (2)已知乙车以60千米/时的速度匀速行驶,设行驶过 程中,相遇前两车相距的路程为(千米).请直接写出关于的表达式; (3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度.并在图中画出乙车离开城高速公路入口处的距离(千米)与行驶时间(时)之间的函数图象.