(本小题满分14分)已知函数,且.(1)判断的奇偶性并说明理由; (2)判断在区间上的单调性,并证明你的结论;(3)若在区间上,不等式恒成立,试确定实数的取值范围.
已知函数.(1)讨论函数在定义域内的极值点的个数;(2)若函数在处取得极值,对,恒成立,求实数的取值范围.
已知函数.(1)当时,求的最小值;(2)若函数在区间上为单调函数,求实数的取值范围;(3)当时,不等式恒成立,求实数的取值范围.
如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.(1)试建立适当的坐标系,并写出点P、B、D的坐标;(2)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?(3)当BC边上有且仅有一个点Q使得PQ⊥QD时,求二面角Q-PD-A的大小.
如图,在四棱锥中,侧棱底面,底面为矩形,,为的上一点,且,为PC的中点.(Ⅰ)求证:平面AEC;(Ⅱ)求二面角的余弦值.
已知双曲线,点、分别为双曲线的左、右焦点,动点在轴上方.(1)若点的坐标为是双曲线的一条渐近线上的点,求以、为焦点且经过点的椭圆的方程;(2)若∠,求△的外接圆的方程;(3)若在给定直线上任取一点,从点向(2)中圆引一条切线,切点为. 问是否存在一个定点,恒有?请说明理由.