已知函数在与时都取得极值.(1)求的值及的极大值与极小值;(2)若方程有三个互异的实根,求的取值范围;(3)若对,不等式恒成立,求的取值范围.
已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=(nN*),求数列的前n项和.
(本小题满分10分)选修4-5:不等式选修在,的前提下,求a的一个值,是它成为的一个充分但不必要条件。
(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(1)将曲线C的极坐标方程和直线参数方程转化为普通方程;(2)若直线l与曲线C相交于A、B两点,且,试求实数值.
(本小题满分10分)选修4-1:几何证明讲 如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F. 求证:(1);(2)AB2=BE•BD-AE•AC.
(本小题满分12分)若函数的定义域为,其中a、b为任意正实数,且a<b。(1)当A=时,研究的单调性(不必证明);(2)写出的单调区间(不必证明),并求函数的最小值、最大值;(3)若其中k是正整数,对一切正整数k不等式都有解,求m的取值范围。