(本小题满分12分)已知函数。(I)判断并证明函数的奇偶性;(II)判断并证明函数在上的单调性;(III)求函数在上的最大和最小值。
已知是一个单调递增的等差数列,且满足,,数列的前项和为. (Ⅰ)求数列的通项公式;(Ⅱ)证明数列是等比数列.
选修4—5: 不等式选讲. (Ⅰ)设函数.证明:; (Ⅱ)若实数满足,求证:
选修4—4:坐标系与参数方程. 坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C的极坐标方程; (Ⅱ)射线与圆C的交点为O、P两点,求P点的极坐标.
选修4—1:几何证明选讲. 已知圆内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一点,AE为圆O的切线. (Ⅰ)求∠BAE 的度数; (Ⅱ)求证:
设函数,其中为自然对数的底数. (Ⅰ)已知,求证:; (Ⅱ)函数是的导函数,求函数在区间上的最小值.