(本小题满分13分)工厂生产某种产品,次品率p与日产量x(万件)间的关系为: (c为常数, 且0<c<6).已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.(1)将日盈利额y(万元)表示为日产量x(万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=×100%)
已知函数.(Ⅰ)若时,函数在其定义域上是增函数,求b的取值范围;(Ⅱ)在(Ⅰ)的结论下,设函数,求函数的最小值;(Ⅲ)设函数的图象与函数的图象交于P、Q,过线段PQ的中点R作轴的垂线分别交于点M、N,问是否存在点R,使在M处的切线与在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
在直角坐标系,椭圆的左、右焦点分别为.其中也是抛物线的焦点,点M为在第一象限的交点,且.(Ⅰ)求椭圆的方程;(Ⅱ)若过点D(4,0)的直线交于不同的两点A、B,且A在DB之间,试求BOD面积之比的取值范围.
已知双曲线的一个焦点为,一条渐近线方程为,其中是以4为首项的正数数列.(Ⅰ)求数列的通项公式;(Ⅱ)若不等式对一切正常整数恒成立,求实数的取值范围.
在如图的多面体中,平面AEB,(Ⅰ)求证:AB//平面DEG;(Ⅱ)求二面角的余弦值.
口袋中装着标有数字1,2,3,4的小球各2个,从口袋中任取3个小球,按3个小球上最大数字的8倍计分,每个小球被取出的可能性相等,用表示取出的3个小球上的最大数字,求:(Ⅰ)取出的3个小球上的数字互不相同的概率;(Ⅱ)随机变量的概率分布和数学期望;(Ⅲ)计分介于17分到35分之间的概率.