(本题满分12分)某工厂在试验阶段大量生产一种零件。这种零件有、两项技术指标需要检测,设各项技术指标达标与否互不影响。若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品.(Ⅰ)求一个零件经过检测为合格品的概率是多少?(Ⅱ)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率 是多少?(Ⅲ)任意依次抽取该种零件4个,设表示其中合格品的个数,求与.
已知函数,其中为常数. (1)当时,求函数的单调递增区间; (2)若任取,求函数在上是增函数的概率.
在△ABC中,内角A,B,C所对边长分别为,,,. (1)求的最大值及的取值范围; (2)求函数的最大值和最小值.
已知集合A={x|x2-ax+a2-19=0},集合B={x|log2(x2-5x+8)=1},集合C={x|m=1,m≠0,|m|≠1}满足A∩B≠,A∩C=,求实数a的值;
已知函数,其中a>0. (Ⅰ)求函数的单调区间; (Ⅱ)若直线是曲线的切线,求实数a的值; (Ⅲ)设,求在区间上的最大值(其中e为自然对的底数)。
已知各项均为正数的数列满足,且,其中. (Ⅰ)求数列的通项公式; (Ⅱ)设数列满足是否存在正整数m、n(1<m<n),使得成等比数列?若存在,求出所有的m、n的值,若不存在,请说明理由。