点P(3,-5)关于y轴对称的点的坐标是 ( )
某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量(千克)与每千克售价(元满足一次函数关系,部分数据如下表:
售价(元千克)
50
60
70
销售量(千克)
100
80
(1)求与之间的函数表达式;
(2)设商品每天的总利润为(元,求与之间的函数表达式(利润收入成本);
(3)试说明(2)中总利润随售价的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:
甲:9,10,8,5,7,8,10,8,8,7
乙:5,7,8,7,8,9,7,9,10,10
丙:7,6,8,5,4,7,6,3,9,5
(1)根据以上数据完成下表:
平均数
中位数
方差
甲
8
乙
2.2
丙
6
3
(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;
(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.
如图,在四边形中,,,不平行于,过点作交的外接圆于点,连接.
(1)求证:四边形为平行四边形;
(2)连接,求证:平分.
[阅读理解]
我们知道,,那么结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即,第2行两个圆圈中数的和为,即,;第行个圆圈中数的和为,即,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为.
[规律探究]
将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第行的第一个圆圈中的数分别为,2,,发现每个位置上三个圆圈中数的和均为 ,由此可得,这三个三角形数阵所有圆圈中数的总和为: ,因此, .
[解决问题]
根据以上发现,计算:的结果为 .
如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点和(顶点为网格线的交点),以及过格点的直线.
(1)将向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.
(2)画出关于直线对称的三角形.
(3)填空: .