情景一:如图(1)中AC=40m,CB=30m,从教室楼到宿舍楼,总有少数同学不走人行道AC和BC,而直接横穿草坪(即从A到B),你认为他们这样走,近了多少米?说明理由.情景二:M、N是河流l旁的两个村庄,现要在河边修一个抽水站向M、N村供水,问抽水站修在什么地方才能使所需的管道最短?请在图(2)中画出抽水站点P的位置.(保留作图痕迹,不写作法)数学知识来源于生活并且用来为人们服务,上面两个情景你赞同哪一个?你有何感想?(简要说明)
如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.(1)求证:BF=DF;(2)连接CF,请直接写出BE∶CF的值(不必写出计算过程).
已知 x + y = x y ,求代数式 1 x + 1 y - ( 1 - x ) ( 1 - y ) 的值.
如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ; (2)P点从A点出发沿AB边以每秒1个单位的速度向B点移动,移动时间为t秒.①当t为何值时,DP⊥AC?②设,写出y与t之间的函数解析式,并探究P点运动到第几秒到第几秒之间时,y取得最小值.
如图,已知正方形ABCD,把边DC绕D点顺时针旋转30°到DC′处,连接AC′,BC′,CC′,写出图中所有的等腰三角形,并写出推理过程.
已知二次函数.(1)用配方法求其图象的顶点C的坐标,并描述改函数的函数值随自变量的增减而增减的情况;(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.