解方程3y-7+4y=6y-2.5
如图,在平面直角坐标系中,为坐标原点,点,点,的中线与轴交于点,且经过,,三点.
(1)求圆心的坐标;
(2)若直线与相切于点,交轴于点,求直线的函数表达式;
(3)在(2)的条件下,在过点且以圆心为顶点的抛物线上有一动点,过点作轴,交直线于点.若以为半径的与直线相交于另一点.当时,求点的坐标.
如图1,菱形的顶点,在直线上,,以点为旋转中心将菱形顺时针旋转,得到菱形,交对角线于点,交直线于点,连接.
(1)当时,求的大小.
(2)如图2,对角线交于点,交直线与点,延长交于点,连接.当的周长为2时,求菱形的周长.
扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了.已知去年这种水果批发销售总额为10万元.
(1)求这种水果今年每千克的平均批发价是多少元?
(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.
如图,正方形的边在正方形的边上,连接,过点作,交于点.连接,,其中交于点.
(1)求证:为等腰直角三角形.
(2)若,,求的长.
如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:
次数
第1次
第2次
第3次
第4次
第5次
第6次
第7次
第8次
第9次
第10次
数字
3
5
2
4
(1)求前8次的指针所指数字的平均数.
(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.