(本小题满分12分)某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元,每提高一个档次,利润每件增加2元,但每提高一个档次,在相同的时间内,产量减少3件。如果在规定的时间内,最低档次的产品可生产60件(I)请写出相同时间内产品的总利润与档次之间的函数关系式,并写出的定义域(II)在同样的时间内,生产哪一档次产品的总利润最大?并求出最大利润.
已知函数,. (1)设是函数图象的一条对称轴,求的值; (2)求函数的单调递增区间.
已知点A(2,8),B(x1,y1),C(x2,y2)在抛物线上,△ABC的重心与此抛物线的焦点F重合(如图) (1)写出该抛物线的方程和焦点F的坐标; (2)求线段BC中点M的坐标; (3)求BC所在直线的方程.
将圆x2 + y2 + 2x – 2y = 0按向量a= (1,–1)平移得到圆O,直线l和圆O相交于A、B两点,若在圆O上存在点C,使,且=a. (1)求的值;(2)求弦AB的长;(3)求直线l的方程.
如图,四棱锥S—ABCD的底面是边长为1的正方形, SD垂直于底面ABCD,SB=. (1)求证BCSC; (2)设棱SA的中点为M,求异面直线DM与SB所成角的大小.
已知ΔABC的三边方程是AB:5x-y-12=0,BC:x+3y+4=0,CA:x-5y+12=0, 求:(1)∠A的正切;(2)BC边上的高所在的直线的方程.