(本小题满分12分)某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元,每提高一个档次,利润每件增加2元,但每提高一个档次,在相同的时间内,产量减少3件。如果在规定的时间内,最低档次的产品可生产60件(I)请写出相同时间内产品的总利润与档次之间的函数关系式,并写出的定义域(II)在同样的时间内,生产哪一档次产品的总利润最大?并求出最大利润.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.(1)若ABBC,CPPB,求证:CPPA:(2)若过点A作直线⊥平面ABC,求证://平面PBC.
【原创】设复数,(1)若,,求复数的实部为奇数,虚部为偶数的概率;(2) 若,,设表示直线与圆的交点个数,列出的概率分布列,并求出的数学期望;
(本小题满分12分)已知向量,函数.(1)求函数的单调递增区间;(2)在中,角的对边分别为,若,,,求的面积.
(本小题满分14分)已知,函数,.(的图象连续不断)(Ⅰ) 求的单调区间;(Ⅱ) 当时,证明:存在,使;(Ⅲ) 若存在属于区间的,且,使,证明:.
(本小题满分14分)已知椭圆()的离心率为,右焦点到直线的距离为.(1)求椭圆的方程;(2)已知点,斜率为的直线交椭圆于两个不同点. ,设直线与的斜率分别为,,①若直线过椭圆的左顶点,求此时,的值;②试猜测,的关系,并给出你的证明.