解方程:
(本题9分)如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作□APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).(1)求证:∠EAP=∠EPA;(2)□APCD是否为矩形?请说明理由;(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.
(本题8分)网上报道入春以来山东蔬菜严重滞销.为了减少菜农的损失,政府部门出台了相关补贴政策:采取每吨补贴0.02万元的办法补偿菜农.下图是某菜农今年政府补助前、后蔬菜销售总收入y(万元)与销售量x(吨)的关系图.请结合图象解答以下问题:(1)在出台该项优惠政策前,蔬菜的售价为每吨多少万元?(2)出台该项优惠政策后,该菜农将剩余蔬菜按原售价打九折赶紧全部销完,加上政府补贴共收入11.7万元,求菜农共销售了多少吨蔬菜?(3)①求出台该项优惠政策后y与x的函数关系式;②去年该菜农销售30吨,总收入为10.25万元;若按今年的销售方式,则至少要销售多少吨蔬菜,总收入才能达到或超过去年水平.
(本题6分)如图,内接于⊙O,点在半径的延长线上,.(1)试判断直线与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧、线段和所围成的阴影部分面积(结果保留和根号).
(本题8分)某数学兴趣小组,利用树影测量树高.已测出树AB的影长AC为9米,并测出此时太阳光线与地面成30°夹角. (1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变。①求树与地面成45°角时的影长。②试求树影的最大长度.(计算结果精确到0.1米,参考数据:≈1.414, ≈1.732)
(本题8分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图1中,“7分”所在扇形的圆心角等于 °.(2)请你将图2的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?