设为关于n的k次多项式.数列{an}的首项,前n项和为.对于任意的正整数n,都成立.(1)若,求证:数列{an}是等比数列;(2)试确定所有的自然数k,使得数列{an}能成等差数列
已知条件使不等式成立;条件有两个负数根,若为真,且为假,求实数的取值范围.
已知等比数列是递增数列,,数列满足,且()(1)证明:数列是等差数列;(2)若对任意,不等式总成立,求实数的最大值.
如图,在三棱锥中,,,°,平面平面,、分别为、中点.(1)求证:;(2)求二面角的大小.
如图,已知矩形所在平面外一点,平面,分别是的中点,.(1)求证:平面(2)若,求直线与平面所成角的正弦值.
某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,则该顾客在3次抽奖中至多有两次获得一等奖的概率.