已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为3. (Ⅰ)求椭圆的标准方程; (Ⅱ)已知圆,直线.试证明:当点在椭圆上运动时,直线与圆恒相交,并求直线被圆所截得弦长的取值范围. (Ⅲ)设直线与椭圆交于两点,若直线交轴于点,且,当变化时,求 的值;
己知圆的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为. (1)将圆的参数方程他为普通方程,将圆的极坐标方程化为直角坐标方程; (2)圆,是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
(本小题满分10分)选修4-l:几何证明选讲在ABC中,D是AB边上一点,ACD的外接圆交BC于点E,AB= 2BE (1)求证:BC= 2BD; (2)若CD平分ACB,且AC =2,EC =1,求BD的长
己知函数,其中 (1)求函数的单调区间; (2)若直线x-y-l=0是曲线y=的切线,求实数的值; (3)设,求g(x)在区间上的最大值(其中e为自然对数的底数)
设数列满足 (1)求数列的通项公式; (2)令,求数列的前n项和
如图,直三棱柱中,D,E分别是AB,的中点 (1)证明:; (2)设,求三棱锥的体积