(设z=2x+y,变量x,y满足条件(1)求z的最大值与最小值;(2)已知 ,求的最大值及此时的值;(3)已知 ,求的最小值及此时的值.
设数列的前项和为,满足,且。(Ⅰ)求的值;(Ⅱ)求数列的通项公式;(Ⅲ)设数列的前项和为,且,证明:对一切正整数, 都有:
如图,在平面直坐标系中,已知椭圆,经过点,其中e为椭圆的离心率.且椭圆与直线 有且只有一个交点。(Ⅰ)求椭圆的方程;(Ⅱ)设不经过原点的直线与椭圆相交与A,B两点,第一象限内的点在椭圆上,直线平分线段,求:当的面积取得最大值时直线的方程。
已知函数(Ⅰ)求函数的单调区间;(Ⅱ)a为何值时,方程有三个不同的实根.
在锐角中,内角对边的边长分别是, 且(Ⅰ)求(Ⅱ)若, ,求ΔABC的面积
已知与两平行直线都相切,且圆心在直线上,(Ⅰ)求的方程;(Ⅱ)斜率为2的直线与相交于两点,为坐标原点且满足,求直线的方程。