已知数列各项均为正数,,且对于正整数时,都有。(I)当,求的值,并求数列的通项公式;(II)证明:对于任意,存在与有关的常数,使得对于每个正整数,都有。
设函数,数列的通项满足. (1)求数列的通项公式;(2)判定数列{a n }的单调性.
数列{an}是首项为23,公差为整数的等差数列,且第六项为正,第七项为负. (1)求数列的公差; (2)求前n项和Sn的最大值; (3)当Sn>0时,求n的最大值.
在数列{an}中,a1=2,a17=66,通项公式是项数n的一次函数. (1)求数列{an}的通项公式; (2)88是否是数列{an}中的项.
已知关于x的方程x2-3x+a=0和x2-3x+b=0(a≠b)的四个根组成首项为的等差数列,求a+b的值.
判断下列函数的奇偶性 ①; ②; ③; ④。