如图,在平面直角坐标系中,直线l:沿x轴翻折后,与x轴交于点A,与y轴交于点B,抛物线与y轴交于点D,与直线AB交于点E、点F(点F在点E的右侧).(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线的解析式;(3)如图,在(2)的条件下,过F作FH⊥x轴于点G,与直线l交于点H,在抛物线上是否存在P、Q两点(点P在点Q的上方),PQ与AF交于点M,与FH交于点N,使得直线PQ既平分△AFH的周长,又平分△AFH面积,如果存在,求出P、Q的坐标,若不存在,请说明理由.
先化简,再求值,其中,且为整数.
如图,正方形网格中的每个小正方形的边长都是,每个小格的顶点叫做格点.在正方形网格图①和图②中分别画一个三角形. 要求:(1)这个三角形的一个顶点为格点A,其余顶点从格点B、C、D、E、F、G、H中选取; (2)这个三角形的各边均为无理数且不是等腰三角形.
给出三个整式a2,b2和2ab. (1)当a=3,b=4时,求a2+b2+2ab的值. (2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解.请写出你所选的式子及因式分解的过程.
利用简便方法计算:
解方程: