在一个不透明的口袋中有分别标有数字﹣4,﹣1,2,5的四个质地、大小相同的小球,从口袋中随机摸出一个小球,记录其标有的数字作为x,不放回,再从中摸出第二个小球,记录其标有的数字为y.用这两个数字确定一个点的坐标为(x,y).(1)请用列表法或者画树状图法表示点的坐标的所有可能结果;(2)求点(x,y)位于平面直角坐标系中的第三象限的概率.
(年湖北黄石10分)如图,在矩形ABCD中,把点D沿AE对折,使点D落在OC上的F点,已知AO=8.AD=10.(1)求F点的坐标;(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点O,F,且直线y=6x﹣36是该抛物线的切线,求抛物线的解析式;(3)直线与(2)中的抛物线交于P、Q两点,点B的坐标为(3,),求证:为定值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为|MN|=).
(年贵州黔西南12分)已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式计算.例如:求点P(﹣2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x﹣y+1=0,其中k=1,b=1.所以点P(﹣2,1)到直线y=x+1的距离为.根据以上材料,求:(1)点P(1,1)到直线y=3x﹣2的距离,并说明点P与直线的位置关系;(2)点P(2,﹣1)到直线y=2x﹣1的距离;(3)已知直线y=﹣x+1与y=﹣x+3平行,求这两条直线的距离.
(年贵州六盘水14分)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据,)
(年广西柳州12分)已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1,y1),B(x2,y2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x取值范围在﹣1<x<3时,请写出其函数值y的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG的内切圆的圆心落在y轴上,并求△GAB面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax2+bx+c=0的两根为x1,x2,则:能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x2﹣3x=15两根的和与积.解:原方程变为:x2﹣3x﹣15=0∵一元二次方程的根与系数有关系:∴原方程两根之和=,两根之积=.
(年甘肃兰州10分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.