(本小题满分12分)已知函数.(1)求的单调区间;(2)求在上的最大值
(12分)如图,在四棱锥中,底面,,,是的中点. (Ⅰ)求和平面所成的角的大小; (Ⅱ)证明平面; (Ⅲ)求二面角的正弦值.
(12分)已知:,:().若“非”是“非”的必要而不充分条件,求实数的取值范围.
(12分)在中,已知内角,边.设内角,周长为. (1)求函数的解析式和定义域 (2)求的最大值
如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。 (1)求证:AC⊥SD; (2)若SD⊥平面PAC,求二面角P-AC-D的大小 (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。
.如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=40° (1)求证:EF⊥平面BCE; (2)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE (3)求二面角F—BD—A的大小。