已知一隧道的截面是一个半椭圆面(如图所示),要保证车辆正常通行,车顶离隧道顶部至少要有米的距离,现有一货车,车宽米,车高米.(1)若此隧道为单向通行,经测量隧道的跨度是米,则应如何设计隧道才能保证此货车正常通行?(2)圆可以看作是长轴短轴相等的特殊椭圆,类比圆面积公式,请你推测椭圆的面积公式.并问,当隧道为双向通行(车道间的距离忽略不记)时,要使此货车安全通过,应如何设计隧道,才会使同等隧道长度下开凿的土方量最小?
设函数,. (1)若,求的最大值及相应的集合; (2)若是的一个零点,且,求的值和的最小正周期.
已知函数 (1)解不等式; (2)若不等式的解集为空集,求实数的取值范围.
平面直角坐标系中,已知曲线,将曲线上所有点横坐标,纵坐标分别伸长为原来的倍和倍后,得到曲线 (1)试写出曲线的参数方程; (2)在曲线上求点,使得点到直线的距离最大,并求距离最大值.
如图,△内接于⊙,,直线切⊙于点,弦,相交于点. (1)求证:△≌△; (2)若,求长.
已知函数(其中为常数). (Ⅰ)当时,求函数的单调区间; (Ⅱ) 当时,设函数的3个极值点为,且.证明:.