以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是的切线,连接OQ. 求的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被截得的弦长.
如图所示,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切与点B,连接BA并延长交⊙A于点D,交ON于点E。 (1)求证:ON是⊙A的切线; (2)若∠MON=60°,求图中阴影部分的面积(结果保留π)。
如图,已知直线分别交轴、轴于A、B两点,抛物线经过A、B两点,点C是抛物线与轴的另一个交点(与A点不重合) (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标。
某商场要经营一种新上市的文具,进价为20元/件。试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售数量就减少10件。 (1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价(元)之间的函数关系式; (2)求销售单价为多少元时,该文具每天的销售利润最大.
为落实“两免一补”政策,腾冲县2013年投入教育经费2500万元,预计2015年投入教育经费3600万元,已知2013年到2015年的教育经费投入以相同的百分率逐年增长。 (1)求每年的平均增长率。 (2)按该平均增长率请你帮计算一下2016年腾冲县投入的教育经费为多少万元?
如图,在⊙O中,OM⊥AB于M,ON⊥CD于N,且OM=ON,求证AB=CD。