(满分l4分)如图已知直线l1:y=x+与直线l2:y=2x+16相交于点C,l1,l2分别交x轴于A,B两点.矩形DEFG的顶点D,E分别在直线l1,l2上,顶点F,G都在X轴上,且点G与点B重合.(1)求△ABC的面积;(2)求矩形DEFG的边DE与EF的长;(3)若此时矩形DEFG,沿x轴的反方向以每秒l个单位长度的速度平移,设移动时间为t 5(0≤t≤12),矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.
如图,已知抛物线的图象,将其向右平移两个单位后得到图象. (1)求图象所表示的抛物线的解析式: (2)设抛物线和轴相交于点、点(点位于点的右侧),顶点为点,点位于轴负半轴上,且到轴的距离等于点到轴的距离的2倍,求所在直线的解析式.
某公司营销两种产品,根据市场调研,发现如下信息: 信息1:销售种产品所获利润(万元)与所售产品(吨)之间存在二次函数关系.当时,;当时,. 信息2:销售种产品所获利润(万元)与所售产品(吨)之间存在正比例函数关系. 根据以上信息,解答下列问题:(1)求二次函数解析式; (2)该公司准备购进两种产品共10吨,请设计一个营销方案,使销售两种产品获得的利润之和最大,最大利润是多少?
已知抛物线与轴交于两点A,B,且,求k的值.
点P在反比例函数的图象上,它关于轴的对称点在一次函数的图象上,求此反比例函数的解析式.
将抛物线向左平移个单位长度,使之过点,求的值.