已知函数(1)写出函数图像的顶点坐标及其单调递增递减区间.(2)若函数的定义域和值域是,求的值.
已知偶函数()在点处的切线与直线垂直,函数.(Ⅰ)求函数的解析式.(Ⅱ)当时,求函数的单调区间和极值点;(Ⅲ)证明:对于任意实数x,不等式恒成立.(其中e=2.71828…是自然对数的底数)
已知中,点,动点满足(常数),点的轨迹为Γ.(Ⅰ)试求曲线Γ的轨迹方程;(Ⅱ)当时,过定点的直线与曲线Γ相交于两点,是曲线Γ上不同于的动点,试求面积的最大值.
某商场的销售部经过市场调查发现,该商场的某种商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为元/千克时,每日可售出该商品千克.(Ⅰ)求的值;(Ⅱ)若该商品的成本为元/千克,试确定销售价格的值,使该商场每日销售该商品所获得的利润最大.
如图所示,和两点分别在射线(点,分别在第一,四象限)上移动,且为坐标原点,动点满足.(Ⅰ)求的值;(Ⅱ)求动点的轨迹方程,并说明它表示什么曲线.
为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2014年该市某中学的某新生想通过考核选拨进入该校的“电影社”和“心理社”,已知该同学通过考核选拨进入这两个社团成功与否相互独立.根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为,并且进入“电影社”的概率小于进入“心理社”的概率.(Ⅰ)求该同学分别通过选拨进入“电影社”的概率和进入“心理社”的概率;(Ⅱ)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修课学分分数的分布列和数学期望.