正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。(1)试判断直线AB与平面DEF的位置关系,并说明理由;(2)求二面角E—DF—C的余弦值;(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.
(本小题满分12分)在中,已知内角A、B、C所对的边分别为a、b、c,向量,,且。(I)求锐角B的大小;(II)如果,求的面积的最大值。
(本小题满分14分)已知递增数列满足:,,且、、成等比数列。(I)求数列的通项公式;(II)若数列满足:,且。①证明数列是等比数列,并求数列的通项公式;②设,数列前项和为,,。当时,试比较A与B的大小。
(本小题满分12分)已知函数(为实常数)(Ⅰ)若函数为奇函数,求此函数的单调区间;(Ⅱ)记,当,试讨论函数的图象与函数的图象的交点个数.
(本小题满分12分)已知函数 (I)求的值;(II)解不等式: