(本小题满分8分)2011年3月10日,云南盈江县发生里氏5.8级地震。萧山金利浦地震救援队接到上级命令后立即赶赴震区进行救援。救援队利用生命探测仪在某建筑物废墟下方探测到点 C 处有生命迹象,已知废墟一侧地面上两探测点A、B 相距3米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度。(结果精确到0.1米,参考数据:)
(6分)先化简,再求值. (-)÷,其中x=+1.
如图1,△ABC中,AB=AC=5cm,BC=6cm,边长为2cm的菱形DEFG两边DG、DE分别在AC、AB上.若菱形DEFG以1cm/s的速度沿射线AC方向平移. (1)经过▲秒菱形DEFG的顶点F恰好在BC上; (2)求菱形DEFG的面积; (3)设菱形DEFG与△ABC的重合部分为Scm2,菱形DEFG平移的时间为t秒.求S与t的函数关系式.
(8分)A、B两地相距630千米,客车、货车分别从A、B两地同时出发,匀速相向行驶.货车两小时可到达途中C站,客车需9小时到达C站(如图1所示).货车的速度是客车的,客、货车到C站的距离分别为y1、y2(千米),它们与行驶时间x(小 时)之间的函数关系如图2所示. (1)求客、货两车的速度; (2)求两小时后,货车到C站的距离y2与行驶时间x之间的函数关系式; (3)如图2,两函数图象交于点E,求E点坐标,并说明它所表示的实际意义.
我们通常可以对一些图形进行剪切,并利用图形的轴对称、平移、旋转等进行图案设计,如图1中,可以沿线段AE剪切矩形ABCD,再将△ABE通过变换与梯形 AECD拼接成等腰梯形.请按下列要求进行图案设计: (1)把矩形剪切2次拼接成一个菱形,请在图2中画出剪切线,再画出拼接示意图; (2)把矩形剪切1次拼接成一个菱形,请在图3中画出剪切线,再画出拼接示意图.