(满分12分)) 设椭圆E: (a,b>0)过(2,) ,(,1)两点,O为坐标原点.(Ⅰ)求椭圆E的方程(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由
(本小题满分12分)两城相距,在两地之间距城的地建一核电站给 两城供电,为保证城市安全,核电站距市距离不得少于.已知供电费用与供电距离的平方和供电量之积成正比,比例系数.若城供电量为亿度/月,城为亿度/月.(I)把月供电总费用表示成的函数,并求定义域;(II)核电站建在距城多远,才能使供电费用最小.
(本小题满分12分)直线经过点,且与圆相交,截得弦长为,求的方程.
(本小题满分12分)如图是一个几何体的正视图和俯视图.(I)画出其侧视图,试判断该几何体是什么几何体;(II)求出该几何体的全面积;(III)求出该几何体的体积.
(本小题满分12分)求经过两直线和的交点且与直线垂直的直线方程.
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设,对于项数为的有穷数列,令为中最大值,称数列为的“创新数列”.例如数列3,5,4,7的创新数列为3,5,5,7.考查自然数的所有排列,将每种排列都视为一个有穷数列.(1)若,写出创新数列为3,4,4,4的所有数列;(2)是否存在数列的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.(3)是否存在数列,使它的创新数列为等差数列?若存在,求出满足所有条件的数列的个数;若不存在,请说明理由.