(本小题满分14分)已知椭圆C的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).(Ⅰ)求椭圆C的方程;(Ⅱ)设点P是椭圆C的左准线与轴的交点,过点P的直线与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线的斜率的取值范围。
已知:是一次函数,其图像过点,且,求的解析式。
已知复数,则当m为何实数时,复数z是(1)实数;(2)虚数;(3)纯虚数;(4)零;(5)对应的点在第三象限
如图所示,流程图给出了无穷等差整数列,时,输出的时,输出的(其中d为公差)(I)求数列的通项公式;(II)是否存在最小的正数m,使得成立?若存在,求出m的值,若不存在,请说明理由。
已知点B(0,1),点C(0,—3),直线PB、PC都是圆的切线(P点不在y轴上).(I)求过点P且焦点在x轴上抛物线的标准方程;(II)过点(1,0)作直线与(I)中的抛物线相交于M、N两点,问是否存在定点R,使为常数?若存在,求出点R的坐标与常数;若不存在,请说明理由。
已知函数(I)若,判断函数在定义域内的单调性;(II)若函数在内存在极值,求实数m的取值范围。