(本小题满分14分)已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),…,f (an),…(n∈N)是首项为m2,公比为m的等比数列.(1)求证:数列{an}是等差数列;(2)若bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn;(3)若cn= f(an) lg f (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.
在平面直角坐标系中,设△ABC的顶点分别为,圆M是△ABC的外接圆,直线的方程是, (1)求圆M的方程; (2)证明:直线与圆M相交; (3)若直线被圆M截得的弦长为3,求直线的方程.
四棱锥P﹣ABCD中,底面ABCD是边长为8的菱形,∠BAD=,若PA=PD=5,平面PAD⊥平面ABCD. (1)求四棱锥P﹣ABCD的体积; (2)求证:AD⊥PB.
已知:,不等式恒成立,:椭圆的焦点在轴上.若命题p∧q为真命题,求实数m的取值范围.
如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点. (1)求证:GH∥平面CDE; (2)求证:面ADEF⊥面ABCD.
如图,已知椭圆(a>b>0)的离心率,过点和的直线与原点的距离为. (1)求椭圆的方程. (2)已知定点,若直线与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.