某地震救援队探测出某建筑物废墟下方点 C 处有生命迹象,已知废墟一侧地面上两探测点A、B 相距 3 米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度.(结果精确到0.1米,参考数据:)
解不等式组:
化简,求值: ,其中x=
计算:
如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴交于点C. (1)若∠A=∠AOC,试说明:∠B=∠BOC; (2)延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数; (3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.
如图,AD为△ABC的中线,BE为△ABD的中线。 (1)∠ABE=15°,∠BAD=40°,求∠BED的度数; (2)在△BED中作BD边上的高; (3)若△ABC的面积为80,BD=5,则△BDE 中BD边上的高为多少?