图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在 Rt△ABC中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,求图乙中BE的长.
(1)计算:(-2)2+(-π)0+|1-|; (2)解方程组:.
如图,抛物线与x轴交于点A、B两点,与y轴交于点C,且A点坐标(-3,0),连接BC、AC. (1)求该抛物线解析式; (2)求AB和OC的长; (3)点E从点B出发,沿x轴向点A运动(点E与点A、B不重合),过点E作直线l平行AC,交BC于点D,设BE的长为m,△BDE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围; (4)在(3)的条件下,连接CE,求△CDE面积的最大值.
如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN. (1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程; (2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否成立?请说明理由; (3)当点M在⊙O外部,如图三,∠AMO=30°,求图中阴影部分的面积.
如图,将边长为8的正方形纸片ABCD折叠,使点B落在CD边的中点E上,压平后得到折痕MN,EF与AD边交于点G. (1)求CN的长; (2)求DG的长; (3)AM= .(直接填结果)
如图,已知A(-4,0.5),B(-1,2)是一次函数y=ax+b与反比例函数(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D. (1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值? (2)求一次函数解析式及m的值; (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.