在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)(Ⅰ)求证:A1E⊥平面BEP;(Ⅱ)求二面角A1-BP-E的大小。
已知椭圆为其左、右焦点,A为右顶点,l为左准线,过的直线与椭圆相交于P,Q两点,且有 (1)求椭圆C的离心率e的最小值; (2),求证:M,N两点的纵坐标之积是定值。
函数在x=α处取得极小值,在x=β处取得极大值,且α2=β (1)求α的值; (2)求函数在上的最大值g(t)。
如图,在正三棱锥中,底面边长是2,D是BC的中点,M在BB1上,且. (1)求证:; (2)求三棱锥的体积; (3)求二面角的余弦值.
为了更好地服务于2010年世博会,上海某酒店随机地对最近入住的名旅客进行服务质量问卷调查,把旅客对住宿的舒适满意度与价格满意度分为五个等级: “1级(很不满意)”、“2级(不满意)”、“3级(一般)”、“4级(满意)”、“5级(很满意)”其结果如表所示,若在这个样本中,任选一人,其舒适度为,价格满意度. (1)根据样本中的数据求P(y=5)及P(x≥3且y=3)的值; (2)若的期望值为,求a、b、c的值; (3)求该人在对价格满意(满意度不低于3)的条件下对舒适度也满意的概率.
在△ABC中,内角A、B、C的对边分别是,,, (1)求内角A; (2)求函数的最小正周期,并写出它的单调增区间。