(本小题满分12分)已知半圆x2+y2=3(y≥0),P为半圆上任一点,A(2,0)为定点,以PA为边作正三角形PAB,且点B与圆心分别在PA的两侧,求四边形POAB面积的最大值.
已知在的展开式中,前三项的系数成等差数列. (1)求; (2)求展开式中的常数项; (3)求展开式中系数最大的项.
已知复数. (1)求的实部与虚部; (2)若(是的共轭复数),求和的值.
(本小题满分10分)选修4-5:不等式选讲 已知函数. (Ⅰ)若不等式的解集为,求实数的值; (Ⅱ)在(Ⅰ)的条件下,若存在实数使成立,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程 已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同.直线的极坐标方程为:,点,参数. (Ⅰ)求点轨迹的直角坐标方程; (Ⅱ)求点到直线距离的最大值.
(本小题满分10分)选修4-1:几何证明选讲 已知为半圆的直径,,为半圆上一点,过点作半圆的切线,过点作于,交半圆于点,. (Ⅰ)求证:平分; (Ⅱ)求的长.