(本小题满分12分)已知半圆x2+y2=3(y≥0),P为半圆上任一点,A(2,0)为定点,以PA为边作正三角形PAB,且点B与圆心分别在PA的两侧,求四边形POAB面积的最大值.
已知的展开式的各项系数之和等于展开式中的常数项,求展开式中含的项的二项式系数.
甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和,求 (1)恰有1人译出密码的概率; (2)若达到译出密码的概率为,至少需要多少乙这样的人.
已知函数,求函数的值域 (2)求不等式:的解集.
已知曲线:(为参数),:(为参数). (1)化,的方程为普通方程,并说明它们分别表示什么曲线; (2)若上的点对应的参数为,为上的动点,求中点到直线(为参数)距离的最小值.
已知函数。 (Ⅰ)求函数的图像在处的切线方程; (Ⅱ)求的最大值; (Ⅲ)设实数,求函数在上的最小值