.用两个全等的等边△ABC和△ADC,在平面上拼成菱形ABCD,把一个含60°角的三角尺与这个菱形重合,使三角尺有两边分别在AB、AC上,将三角尺绕点A按逆时针方向旋转 (1) 如图1,当三角尺的两边与BC、CD分别相交于点E、F时, 观察或测量BE,CF的长度,你能得出什么结论? 证明你的结论。 图1 (2) 如图2,当三角尺的两边与BC、CD的延长线分别交于E、F时,你在(1)中的结论还成立吗?请说明理由。
如图,在四边形ABCD中,对角线AC、BD相交于点O,直线MN经过点O,设锐角∠DOC=∠,将△DOC以直线MN为对称轴翻折得到△D’OC’,直线A D’、B C’相交于点P. (Ⅰ)当四边形ABCD是矩形时,如图1,请猜想A D’、B C’的数量关系以及∠APB与∠α的大小关系; (Ⅱ)当四边形ABCD是平行四边形时,如图2,(1)中的结论还成立吗? (Ⅲ)当四边形ABCD是等腰梯形时,如图3,∠APB与∠α有怎样的数量关系?请证明.
某工厂设计了一款产品,成本价为每件20元.投放市场进行试销,得到如下数据:
(I)若日销售量(件)是售价(元∕件)的一次函数,求这个一次函数解析式; (II)设这个工厂试销该产品每天获得的利润(利润=销售价-成本价)为W(元),当售价定为每件多少元时,工厂每天获得的利润最大?最大利润是多少元?
如图,在一次课外数学实践活动中,小明站在操场的A处,他的两侧分别是旗杆CD和一幢教学楼EF,点A、D、F在同一直线上,从A处测得旗杆顶部和教学楼顶部的仰角分别为45°和60°,已知DF=14m,EF=15m,求旗杆CD高.(结果精确到0.01m,参考数据:≈ 1.414,≈ 1.732)
如图,是的直径,点在的延长线上,弦垂足为,连接 (I)求证:是的切线; (II)若半径为4,求的长.
已知一次函数(b为常数)的图象与反比例函数的图象相交于点P(1,a). (I) 求a的值及一次函数的解析式; (II) 当x>1时,试判断与的大小.并说明理由.