(本小题满分12分)已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根。若p或q为真,p且q为假。求实数m的取值范围。
已知等差数列{}的公差,它的前n项和为,若,且成等比数列,(Ⅰ)求数列{}的通项公式;(Ⅱ)若数列{}的前n项和为,求证:.
已知是函数图象的一条对称轴.(Ⅰ)求的值;(Ⅱ)化简的解析式,并作出函数在上的图象简图(不要求写作图过程).
已知函数,,图象与轴异于原点的交点M处的切线为,与轴的交点N处的切线为, 并且与平行.(1)已知实数t∈R,求的取值范围及函数的最小值(用t表示);(2)令,给定,对于两个大于1的正数,存在实数满足:,,并且使得不等式恒成立,求实数的取值范围.
已知椭圆()的左、右焦点分别为、,短轴两个端点为、,且四边形是边长为2的正方形.(1)求椭圆的方程; (2)若、分别是椭圆长轴的左、右端点,动点满足,连结,交椭圆于点.证明:为定值;(3)在(2)的条件下,试问轴上是否存在异于点的定点Q,使得以为直径的圆恒过直线的交点,若存在,求出点Q的坐标;若不存在,说明理由.
已知等差数列的前项和为,并且,,数列满足:,,记数列的前项和为.(1)求数列的通项公式及前项和公式;(2)求数列的通项公式及前项和公式;(3)记集合,若的子集个数为16,求实数的取值范围。