已知全集U=R,集合A={x|log2(3-x)≤2},集合B={x|≥1}.(1)求A、B; (2)求(∁UA)∩B.
已知数列的前n项和为,且.(1)求出数列的通项公式;(2)设数列满足,若对于任意正整数n都成立,求实数t的取值范围.
已知函数.(1)解不等式:;(2)已知,求证:恒成立.
在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为,A,B两点的极坐标分别为.(1)求圆C的普通方程和直线的直角坐标方程;(2)点P是圆C上任一点,求面积的最小值.
如图,的外接圆的切线AE与BC的延长线相交于点E,的平分线与BC相交于点D,求证:(1);(2).
如图,过椭圆内一点的动直线与椭圆相交于M,N两点,当平行于x轴和垂直于x轴时,被椭圆所截得的线段长均为.(1)求椭圆的方程;(2)在平面直角坐标系中,是否存在与点A不同的定点B,使得对任意过点的动直线都满足?若存在,求出定点B的坐标,若不存在,请说明理由.