某电器商经过多年的经验发现本店每个月售出的电冰箱的台数是一个随机变量,它的分布列为: ;设每售出一台电冰箱,电器商获利300元.如销售不出,则每台每月需花保管费100元. 问电器商每月初购进多少台电冰箱才能使月平均收益最大?
已知数列的前项和为,.(1)求证:数列是等比数列;(2)若,求实数的取值范围.
已知直角坐标平面中,为坐标原点,.(1)求的大小(结果用反三角函数值表示);(2)设点为轴上一点,求的最大值及取得最大值时点的坐标.
用行列式解关于的方程组: ,并对解的情况进行讨论.
已知向量的夹角为.(1)求的值;(2)求的大小.
已知圆,(Ⅰ)若过定点()的直线与圆相切,求直线的方程;(Ⅱ)若过定点()且倾斜角为的直线与圆相交于两点,求线段的中点的坐标;(Ⅲ) 问是否存在斜率为的直线,使被圆截得的弦为,且以为直径的圆经过原点?若存在,请写出求直线的方程;若不存在,请说明理由。