在四棱锥中,底面是边长为1的菱形,, 底面, ,为的中点(1)求异面直线AB与MD所成角的大小;(2)求平面与平面所成的二面角的余弦值.
为迎接省运会在我市召开,美化城市,在某主干道上布置系列大型花盆,该圆形花盆直径2米,内部划分为不同区域种植不同花草 如图所示,在蝶形区域内种植百日红,该蝶形区域由四个对称的全等三角形组成,其中一个三角形的顶点为圆心,在圆周上,在半径上,设计要求 (1)请设置一个变量,写出该蝶形区域的面积关于的函数表达式; (2)为多少时,该蝶形区域面积最大?
设椭圆的左焦点为,短轴上端点为,连接并延长交椭圆于点,连接并延长交椭圆于点,过三点的圆的圆心为 (1)若的坐标为,求椭圆方程和圆的方程; (2)若为圆的切线,求椭圆的离心率
如图,四边形ABCD为正方形,PD⊥平面ABCD,,AF⊥PC于点F,FE∥CD交PD于点E. (1)证明:CF⊥平面ADF; (2)若,证明平面
已知 (1)求的值; (2)求的值
已知实数,函数. (1)当时,讨论函数的单调性; (2)若在区间上是增函数,求实数的取值范围; (3)若当时,函数图象上的点均在不等式,所表示的平面区域内,求实数的取值范围.