已知:直线a∥b,点A、B在直线a上,点C、D在直线b上,如图(1). 若,则 (2). 若,那么吗?说明你的理由。
如图,EF是⊙O的直径. (1)尺规作图:作出⊙O的内接正方形ABCD,使正方形ABCD的对边AD、BC都垂直于EF (见示意图). (说明:不要求写作法,但须保留作图痕迹) (2)连结EA、EB,求出∠EAD、∠EBC的度数
计算:
如图, 已知抛物线与x轴相交于A、B,点B的坐标为(10,0),顶点M的坐标为(4,8),点P从点M出发,以每秒1个单位的速度沿线段MA向A点运动;点Q从点A出发,以每秒2个单位的速度沿AB向B点运动,若P、Q同时出发,当其中的一点到达终点时,另一点也随之停止运动,设运动时间为t秒钟。 (1)求抛物线的解析式; (2)设△APQ的面积为S,求S与t之间的函数关系式,△APQ的面积是否有最大值?若有,请求出其最大值;若没有,请说明理由; (3)当t为何值时,△APQ为等腰三角形?
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量(千克)随销售单价(元/千克)的变化而变化,具体关系式为:,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为(元),解答下列问题: (1)求与的关系式; (2)当取何值时,的值最大? (3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
如图3,在中,,,两点分别在上,,,将绕点顺时针旋转,得到(如图4,点分别与对应),点在上,与相交于点. (1)求的度数; (2)求证:四边形是梯形; (3)求的面积.