化简求值:.
如图,在△ABC中,∠A=30°,∠B=45°,AC=2,求△ABC的周长和面积。(12')
计算。(10')(1)sin30°-cos45°+×-tan45° (2)2sin30°·tan30°+cos60°·tan60°
在Rt△ABC中,∠C=90°,D,E分别为CB,CA延长线上的点,BE与AD的交点为P.(1)若BD=AC,AE=CD,在图1中画出符合题意的图形,并直接写出∠APE的度数;(2)若,,求∠APE的度数.
如图1,平面直角坐标系xOy中,A,B.将△OAB绕点O顺时针旋转a角(0°<a<90°)得到△OCD(O,A,B的对应点分别为O,C,D),将△OAB沿轴负方向平移m个单位得到△EFG(m>0,O,A,B的对应点分别为E,F,G),a,m的值恰使点C,D,F落在同一反比例函数(k≠0)的图象上.(1)∠AOB=" " °,a=" " °;(2)求经过点A,B,F的抛物线的解析式;(3)若(2)中抛物线的顶点为M,抛物线与直线EF的另一个交点为H,抛物线上的点P满足以P,M,F,A为顶点的四边形的面积与四边形MFAH的面积相等(点P不与点H重合),请直接写出满足条件的点P的个数,并求位于直线EF上方的点P的坐标.
抛物线,a>0,c<0,.(1)求证:;(2)抛物线经过点,Q.① 判断的符号;② 若抛物线与x轴的两个交点分别为点A,点B(点A在点B左侧),请说明,.