如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.
解下列不等式,并把解集在数轴上表示出来。(每小题4分,共8分)(1) (2)
如图,已知BE=CF,AB=CD,∠B=∠C,求证:AF=DE。
已知:在平面直角坐标系中,四边形ABCD是长方形, ∠A=∠B=∠C=∠D=90°AB∥CD,AB=CD=8cm,AD=BC=6cm,D点与原点重合,坐标为(0,0)(1)写出点B的坐标.(2)动点P从点A出发以每秒3个单位长度的速度向终点B匀速运动, 动点Q从点C出发以每秒4个单位长度的速度I沿射线CD方向匀速运动,若P,Q两点同时出发,设运动时间为t秒,当t为何值时,PQ∥BC?(3)在Q的运动过程中,当Q运动到什么位置时,使△ADQ的面积为9? 求出此时Q点的坐标.
一家服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元; 若购进A种型号服装12件,B种型号服装8件,需要1880元.(1)A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获利18元,销售1件B型服装可获利30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装的数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货?
自从北京举办2008年夏季奥运会以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2分)(2)在条形图中,将表示“一般了解”的部分补充完整.(2’)(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(2’)(4)如果全年级共1000名同学,请你估算全年级对奥运知识 “了解较多”的学生人数.(2’)