(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、四轮问题的概率分别为、、、,且各轮问题能否正确回答互不影响。(Ⅰ)求该选手进入第三轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率;(Ⅲ)该选手在选拔过程中回答过的问题个数记为,求随机变量的分布列和期望。
对于集合M,N, 定义,,
已知 (1)求函数的最大值;(2)求使成立的x的取值范围.
设函数 (1)求函数的定义域; (2)求函数的值域; (3)求函数的单调区间.
(本小题14分)已知点(1,)是函数且)的图象上一点, 等比数列的前项和为,数列的首项为,且前项和满足-=+(). (1)求数列和的通项公式; (2)若数列{前项和为,问的最小正整数是多少? (3)设求数列的前项和
(本小题14分)在数列中,,,. (Ⅰ)证明数列是等比数列; (Ⅱ)求数列的前项和; (Ⅲ)证明不等式,对任意皆成立.