已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
解不等式组:并把解集在数轴上表示出来.
先化简,再求值:,其中.
(本题满分14分,第(1)小题满分6分,第(2)小题满分5分,第(3)小题 满分3分)如图,在半径为5的⊙O中,点A、B在⊙O上,∠AOB=90º,点C是AB上的一个动点,AC与OB的延长线相交于点D,设AC=,BD=. (1)求关于的函数解析式,并写出它的定义域; (2)如果⊙与⊙O相交于点A、C,且⊙与⊙O的圆心距为2,当BD=OB时,求⊙的半径; (3)是否存在点C,使得△DCB∽△DOC?如果存在,请证明;如果不存在,请简要说明理由.
(本题满分12分,第(1)小题满分3分,第(2)小题满分9分) 如图, 二次函数的图像与轴、轴的交点分别为A、B,点C在这个二次函数的图像上,且∠ABC=90º,∠CAB=∠BAO,. (1)求点A的坐标; (2)求这个二次函数的解析式.
(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在□ABCD中,点E、F分别是AB、CD的中点,CE、AF与对角线BD分别相交于点G、H. (1)求证:DH=HG=BG; (2)如果AD⊥BD,求证:四边形EGFH是菱形.