已知f(x)是定义在[—1,1]上的奇函数,且f (1)=1,若m,n∈[—1,1],m+n≠0时有(1)判断f (x)在[—1,1]上的单调性,并证明你的结论;(2)解不等式:;(3)若f (x)≤对所有x∈[—1,1],∈[—1,1]恒成立,求实数t的取值范围.
在约束条件下,求z=2x-y的最大值和最小值.
若不等式3-(6-a)x-b<0的解集是 (-1,3),求a和b的值.
(满分17分) 已知,函数.(1)当时,求所有使成立的的值;(2)当时,求函数在闭区间上的最大值和最小值;(3) 试讨论函数的图像与直线的交点个数.
(满分15分)设函数,(1)请画出函数的大致图像;(2)若不等式对于任意的恒成立,求实数的取值范围.
(满分10分)已知,其中为常数(1)判断在定义域上的单调性并用单调性的定义证明之;(2)若函数的定义域为,求函数的最大值和最小值.