(本小题满分12分)某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次减少,问过滤几次才能使产品达到市场要求?
在极坐标系中,圆C的方程为ρ=2 sin ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 (t为参数),判断直线l和圆C的位置关系.
在平面直角坐标系xOy中,直线x+y+2=0在矩阵M=对应的变换作用下得到直线m:x-y-4=0,求实数a,b的值.
求矩阵的特征值及对应的特征向量.
如图,圆O的直径AB=4,C为圆周上一点,BC=2,过C作圆O的切线l,过A作l的垂线AD,AD分别与直线l、圆O交于点D,E,求线段AE的长.
如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证: (1)∠AED=∠AFD;(2)AB2=BE·BD-AE·AC.